Copyright ©2016 MBD                                 Specification and product names are trademarks or trade names of their respective companies or organizations.

Please reload

Recent Posts

Unified 2D and 3D cell-based high-throughput screening platform using a micropillar/microwell chip

January 11, 2016

Please reload

Featured Posts

High-Throughput and combinatorial Gene Expression on a chip for Metabolism-Induced Toxicology Screening

May 6, 2014

Nature Communications, 5:3739 (06 May 2014).


Differential expression of various drug-metabolizing enzymes (DMEs) in the human liver may cause deviations of pharmacokinetic profiles, resulting in interindividual variability of drug toxicity and/or efficacy. Here, we present the 'Transfected Enzyme and Metabolism Chip' (TeamChip), which predicts potential metabolism-induced drug or drug-candidate toxicity.

The TeamChip is prepared by delivering genes into miniaturized three-dimensional cellular microarrays on a micropillar chip using recombinant adenoviruses in a complementary microwell chip. The device enables users to manipulate the expression of individual and multiple human metabolizing-enzyme genes (such as CYP3A4, CYP2D6, CYP2C9, CYP1A2, CYP2E1 and UGT1A4) in THLE-2 cell microarrays.

To identify specific enzymes involved in drug detoxification, we created 84 combinations of metabolic-gene expressions in a combinatorial fashion on a single microarray. Thus, the TeamChip platform can provide critical information necessary for evaluating metabolism-induced toxicity in a high-throughput manner.


[ +Click ]

Please reload

Please reload

Search By Tags